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ABSTRACT: 

This work presents a new pattern recognition system for color images invariant to rotation, scale and translation 
(RST). The digital system is based on the Fourier transform, the normalized analytic Fourier-Mellin transform and 
Bessel binary rings masks to generate 1D RST invariant signatures for each channel in the RGB color space. Using 
the instantaneous amplitudes of those 1D signatures a classifier cuboids space with confidence level of 95.4% is 
constructed. 
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1. Introduction 
 

Reproduce the pattern recognition human functions are a great challenge and a very difficult task. The research 
community has been employed a lot effort to create robots and automation systems to this purpose. Color is a very 
important feature to human pattern recognition process, if this information is neglected very important characteristic 
could be lost. For example, the color is used to study the Zostera marina leaf injury [1], but the processing of the 
images is done by hand-operated through multiple imaging programs (Adobe PhotoShop, Canon Photostitch and 
ERMapper) although local feature descriptors are used in a variety of pattern recognition real-world applications due 
to the identification efficiency [2-5]. The color-SIFT descriptors are developed to take into account the color feature, 
but the complexity and the calculation increase considerably for the training and the testing phases [6-9].  

This work presents a rotation, scale and translation (RST) invariant color image descriptor based on Bessel binary 
rings masks methodology developed in [10]. This RT invariant methodology is robust and efficient in the pattern 
recognition for gray-level images regardless the position and rotation the object presents. To introduce the scale 
invariance, here is proposed the use of the amplitude spectrum of the normalized analytic Fourier-Mellin transform 
(AFMT). This spectrum is filtered by a Bessel binary rings mask in order to obtain a RST invariant 1D signature for 
each channel in the RGB color space. The instantaneous amplitudes of the signatures for the training color images 
are used to construct cuboids with 95.4% confidence level (based on the statistical boxplot technique); those cuboids 
are used to build the classifier space; in this manner, the classification step reduces considerably the computational 
time investment. The rest of the work is organized as follows: Section 2 describes the procedure to develop the RST 
invariant color image pattern recognition system based on Bessel masks. Section 3 exposes the methodology to 
construct the classifier cuboids space. Finally, conclusions are given in section 4. 

 

2. The RST Invariant Pattern Recognition System for Color Images 
 
2.a. The Bessel binary rings masks 
 
The binary rings masks are obtained using the ratio of Bessel function of first kind and first order by its argument, 
given by  
 

 𝑦 𝑥 =
!! !!!!
!!!!

, 𝑥 ≠ 𝑐! ,
1, 𝑥 = 𝑐! ,

,     (1) 

where 𝑥 = 1,… , 𝑛, 𝑛×𝑛 is the size of the image 𝐼 and 𝑐! , 𝑐!  is the central pixel of 𝐼. Fig. 1 shows the graph of 𝑦 𝑥  
with 𝑛 = 203 and 𝑐! = 102.  
 
Base on Eq. (1), it is built the following binary functions 
 

 𝑍! 𝑥 = 1, 𝑦 𝑥 > 0,
0, 𝑦 𝑥 ≤ 0,   (2) 

and 

 𝑍! 𝑥 = 1, 𝑦 𝑥 > 0,
0, 𝑦 𝑥 ≤ 0,   (3) 

 
 



                   
Fig.1. Graph of Eq. (1). 

 
 
Finally, taking the vertical axis 𝑥 = 𝑐! as the rotation axis, the 𝑍! function is rotated 180 degrees to obtain 
concentric cylinders of height one, different widths and centred in 𝑐! , 𝑐!  pixel. Taking a cross-section, it is built the 
Bessel binary rings mask 𝐵! [10]. Analogously, the binary ring mask 𝐵! is generated using the 𝑍! function.  Fig. 2 
shows the two Bessel binary rings masks for 203×203 images. 
 

                   
Fig.2. Bessel binary rings masks. (a) Mask 𝐵!. (b) Mask 𝐵!. 

 
 
2.b. The signature of the image 
 
To obtain the signatures of the color image 𝐼, it is split in the three monochromatic images 𝐼! , where 𝐶 represents the 
color channel R, G or B. Then, the amplitude spectrums 𝐴!  of  𝐼!  are introduced in the analytical Fourier-Mellin 
transform 

   𝑀! 𝑘,𝜔 = !
!!

𝐴! 𝑒!, 𝜃   𝑒!"  𝑒!!   !"!!"   𝑑𝜃  𝑑𝜌!!
! ,!

!!    (4) 

where 𝜌 = 𝑙𝑛 𝑟  and 𝜎 > 0 [11]. Fig. 3(b) yields the amplitude spectrum for the red channel of Fig. 3(a), because in 
Eq. (4) this spectrum is set in log-polar coordinates, Fig. 3(c) displays it. Eq. (4) is not invariant to scale yet, but 
normalizing the AFMT (analytical Fourier-Mellin transform) by its value in the central pixel, the amplitude spectrum 
of the normalized AFMT is scale invariance,  

   𝐺! =    !!

!! !!,!!
.   (5) 



Fig. 3(d) shows the normalized AFMT amplitude spectrum of Fig. 3(c). The next step is filters the 𝐺!  images by a 
Bessel mask, that is  

 
𝐻!! = 𝐺!⨂𝐵! ,
𝐻!! = 𝐺!⨂𝐵! ,

   (6) 

where ⊗ means an element-wise product or Hadamard product. An example of this is given in Fig. 3(f). The rings in 
the normalized AFMT amplitude spectrum (𝐻!!  or 𝐻!!) are numbered from inside to outside (without considering the 
black rings, because they represents zero-intensity values). Then, the intensity values in each ring are added and 
assigned to the corresponding ring index to construct the function 𝑆!!  called signature of the image [10]. The 
signature 𝑆!! obtained from the red channel of Fig. 3(a) using the Bessel mask 𝐵! is shown in Fig. 3(g). Fig. 4(b) 
shows the three signatures 𝑆!!, 𝑆!!  and 𝑆!! associated to Fig. 4(a) using the Bessel mask 𝐵!. It is observes in Fig. 4(b), 
the three signatures are quite similar, that is because the intensity values in the monochromatic images are similar. If 
the intensity values are different (e.g. Fig. 4(c)) the signatures differ, as it is exemplified in Fig. 4(d). 

 

 

                   
Fig.3. Signature procedure example. (a) Image 𝐼. (b) Amplitude spectrum  𝐴! 𝑥, 𝑦 . (c) 𝐴! 𝑒!, 𝜃   𝑒!"  , with 𝜎 = 0.5. (d) 

Normalized AFMT amplitude spectrum 𝐺!. (e) Bessel mask 𝐵!. (f) 𝐻!! = 𝐺!⨂𝐵!. (g) The signature 𝑆!! generated using the red 
channel of Fig. 3(a). For visualization purposes the spectrums are given in logarithmic scale. 

 



                   
Fig.4. The signatures of the images. (a) The color image 𝐼 and the monochromatic images 𝐼!, 𝐼!  and 𝐼!. (b) The signatures of  𝐼!, 

𝐼!  and 𝐼! using the binary rings mask 𝐵!. (c) The color image 𝑇 and the monochromatic images 𝑇!, 𝑇!  and 𝑇!. (d) The 
signatures of  𝑇!, 𝑇!  and 𝑇! using the binary rings mask 𝐵!. 

                   

 



The features selected to characterize the image 𝐼 are the instantaneous amplitude of the signatures, given by 
 

 𝐴!! = 𝑆!! 𝑥
!
,   (7) 

where 𝑘 = 𝑃 or 𝑁.   

 

3. The classifier cuboids space 
 

To train the RST invariant pattern recognition system, each image in the reference image database (e.g. Fig. 5) was 
rotated 360° using Δθ = 1°. Thereafter, those images were scaled ±20% with a scale step Δh = 1%. Next, the three 
RST invariant 1D signatures of all those images were obtained. Finally, the instantaneous amplitude of the signatures 
were determined in the following form: lets 𝑅! be the 𝑘-reference image in the database (e.g. using the 𝐵! mask), 
from the instantaneous amplitude values of their rotated and scaled sample images for the red channel a 95.4% 
confidence interval (CI) was built using the statistical method of box-plots with 𝜇! ± 2𝐸𝐸, here 𝜇! represents the 
mean of those instantaneous amplitude values and 𝐸𝐸 the standard error. Analogously, the confidence intervals for B 
and G channels are set. Next, it is constructed a cuboid with edges being the confidence intervals 𝜇! ± 2𝐸𝐸, 
𝜇! ± 2𝐸𝐸 and 𝜇! ± 2𝐸𝐸; and the vertices are set in the coordinates: 𝜇! − 2𝐸𝐸, 𝜇! − 2𝐸𝐸, 𝜇! − 2𝐸𝐸 , 𝜇! +
2𝐸𝐸, 𝜇! − 2𝐸𝐸, 𝜇! − 2𝐸𝐸 , 𝜇! + 2𝐸𝐸, 𝜇! + 2𝐸𝐸, 𝜇! − 2𝐸𝐸 , 𝜇! − 2𝐸𝐸, 𝜇! + 2𝐸𝐸, 𝜇! − 2𝐸𝐸 , 𝜇! −
2𝐸𝐸, 𝜇! − 2𝐸𝐸, 𝜇! + 2𝐸𝐸 , 𝜇! + 2𝐸𝐸, 𝜇! − 2𝐸𝐸, 𝜇! + 2𝐸𝐸 , 𝜇! − 2𝐸𝐸, 𝜇! + 2𝐸𝐸, 𝜇! + 2𝐸𝐸  and 𝜇! +
2𝐸𝐸, 𝜇! + 2𝐸𝐸, 𝜇! + 2𝐸𝐸 . 

 

 

                   

Fig.5. Butterflies database. (a) Danaus plexippus plexippus. (b) Dione juno huascuma. (c) Doxocopa laure acca h. (d) Doxocopa 
laure laure m. (e) Doxocopa pavon m. (f) Dryadula phaetusa. (g) Dryas julia moderata. (h) Dynamine mylitta m. (i) Eryphanis 
aesacus. (j) Eueides procula asidia. (k) Eumaeus debora. (l) Eunica alcmena h. (m) Eunica alcmena m. (n) Eunica caresa h.     

(o) Eunica caresa m. (p) Evenus regalis. (q) Cymatogramma arginussa eubaena. (r) Danaus eresimus montezuma.  
 

 
 
 



Fig. 6 and Fig. 8 show the classifier cuboids space for the database in Fig. 5 using 𝐵! and 𝐵! masks, respectively. 
Hence, a volume space could be assigned to each image without overlapping (Fig. 7 shows an amplification zone of 
the output space to observe the cuboids assigned to some butterflies); in both cases, the RST invariant pattern 
recognition color image presents a confidence level at least of 95.4%. Contrary at correlator pattern recognition 
systems in [10] (where multiple correlation output planes are generated: one for each image in the database) here is 
established one classifier space, achieving in this form reduces the computational time investment. 

 

                   
Fig.6. Classifier cuboids space using the Bessel mask 𝐵!.  

 
 

                   
Fig.7. Amplification zone of the classifier cuboids space using the Bessel mask 𝐵!.  

 
 
 
 



                   
Fig.8. Classifier cuboids space using the Bessel mask 𝐵!.  

 
 
 
4. Conclusions 
This work presents a new rotation, scale and translation invariant 1D signatures pattern recognition system 
specialized for color images. The RST system is based on Fourier transform, the analytic Fourier-Mellin transform 
and Bessel binary rings masks. The 1D RST invariant pattern recognition systems present confidence levels at least 
of 95.4% using the classifier cuboids space methodology. Moreover, the proposal of the use of the single output 
space reduces the computation time investment in the classification step.  
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